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The world’s oceans are undergoing profound changes as a result
of human activities. However, the consequences of escalating hu-
man impacts on marine mammal biodiversity remain poorly un-
derstood. The International Union for the Conservation of Nature
(IUCN) identifies 25% of marine mammals as at risk of extinction,
but the conservation status of nearly 40% of marine mammals
remains unknown due to insufficient data. Predictive models of
extinction risk are crucial to informing present and future conser-
vation needs, yet such models have not been developed for
marine mammals. In this paper, we: (i) used powerful machine-
learning and spatial-modeling approaches to understand the in-
trinsic and extrinsic drivers of marine mammal extinction risk; (ii)
used this information to predict risk across all marine mammals,
including IUCN “Data Deficient” species; and (iii) conducted a spa-
tially explicit assessment of these results to understand how risk is
distributed across the world’s oceans. Rate of offspring production
was the most important predictor of risk. Additional predictors
included taxonomic group, small geographic range area, and small
social group size. Although the interaction of both intrinsic and
extrinsic variables was important in predicting risk, overall, intrin-
sic traits were more important than extrinsic variables. In addition
to the 32 species already on the IUCN Red List, our model identi-
fied 15 more species, suggesting that 37% of all marine mammals
are at risk of extinction. Most at-risk species occur in coastal areas
and in productive regions of the high seas. We identify 13 global
hotspots of risk and show how they overlap with human impacts
and Marine Protected Areas.

International Union for the Conservation of Nature Red List | threatened
and endangered species | life history | random forest models

Oceans occupy 71% of the earth’s surface and harbor much
of its biodiversity. Despite the vast expanse of the oceans, no

area remains unaffected by humans (1). Human activities are
polluting, warming, and acidifying the oceans, melting sea ice,
overharvesting fisheries, and altering entire food webs (1–4).
Fisheries bycatch causes deaths of more than 650,000 marine
mammals each year (5). Overfishing has depleted food supplies by
reducing fish populations by 50–90%, and industrial-scale krill
harvesting will likely further deplete food resources (6–8). In ad-
dition, polar oceans are warming at rates twice as fast as the global
average (3); this has already altered whale migrations, reduced
benthic prey populations, and caused declines in seals and polar
bears (Ursus maritimus) whose lifestyles are dependent on sea ice
(9). The International Union for the Conservation of Nature
(IUCN) Red List currently classifies 25% (32 of 128 species) of
marine mammals as threatened with extinction. Examination of
the threats on the basis of the Red List shows that nearly half of all
species are threatened by two or more human impacts, with pol-
lution being the most pervasive, followed by fishing, invasive spe-
cies, development, hunting, and climate change (Fig. S1).
However, our understanding of which marine mammals are

most at risk remains poor because many species are difficult to
study, changes in their populations can be hard to detect, and
their natural histories have not been well documented (10–12).

Indeed, the conservation status of about 40% of marine mammal
species has not been categorized by the Red List, mostly because
of insufficient information (i.e., “Data Deficient” species), and
with ever-increasing human impacts on the oceans, many more
species likely will become threatened in the near future. Pre-
dictive, spatially explicit models that can identify which species
are most likely to be at risk are urgently needed to address the
rapid changes impacting marine mammal biodiversity (13, 14).
Such quantitative models have been developed for terrestrial
mammals (14–17) and for some marine species (16, 18), but are
lacking for marine mammals as a whole at the global scale.
Here, we provide a predictive, spatially explicit assessment

of global marine mammal extinction risk. We combined spatial
analyses with a powerful machine-learning technique and an
ecoinformatic database to determine (i) which marine mammal
species are at greatest risk; (ii) why they are threatened; and (iii)
where risk is greatest globally. Because extinction results from
the combination of species’ attributes, geographic settings, and
human threats, we developed a predictive model of extinction
that considers the important interactions between intrinsic spe-
cies’ traits and extrinsic environmental variables, including spa-
tially explicit human impacts on the world’s oceans (1). Using
this information, we then identified major geographic hotspots of
extinction risk and showed how these regions overlap with hu-
man activities to inform marine conservation.
We compiled a species-level database for 125 extant marine

mammals, including cetaceans, pinnipeds, sirenians, polar bears,
and two species of otters. Our database consisted of two kinds
of predictor variables: (i) intrinsic biological traits (adult bodymass,
geographic range size, life-history traits, social group size, trophic
group, habitat, foraging location, taxonomic order, diet breadth,
and migratory behavior) and (ii) extrinsic environmental variables
[mean annual net primary production (ANPP) (19) and mean hu-
man impact index (1)] within each species’ geographic range (SI
Materials and Methods). For the intrinsic life-history variables, we
included traits that determine the speed of life history (20, 21).
Specifically, we used the components of mass-specific production,
p, where p = (mw/mA) · l · n, where mA is adult body mass, mw is
offspring weaning mass, l is litter size, and n is number of births
per year (22). We then used a dichotomous response variable to
represent extinction risk: species classified as Vulnerable, En-
dangered, Critically Endangered, or Extinct by the IUCN were
considered “threatened”; species classified as Near Threatened or
of Least Concern were considered “non-threatened” (23).
We quantified relationships between predictor variables and

extinction risk using a random forest model of 500 classification
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trees (24, 25). This is a powerful machine learning technique that
combines the predictions of multiple independent decision tree
models into a robust composite model with high predictive ac-
curacy (24, 26, 27). Decision trees are able to disentangle com-
plex ecological phenomena, such as extinction risk, by identifying
nonlinear, context-dependent interactions among multiple, cor-
related predictor variables (13, 24). Moreover, these models are
non-parametric techniques that provide viable alternatives to
phylogenetic contrasts (28). To assess the role of phylogeny, we
included taxonomic group in our models. We used the random
forest model to estimate the relative importance of each pre-
dictor variable and to predict threat status for each species, in-
cluding Data Deficient species. We provide further details of
methodology in Materials and Methods and in SI Materials and
Methods, and a list of species predicted to be at risk in Table S1.

Results and Discussion
Our random forest model classified species on the Red List with
92% accuracy (Cohen’s kappa = 0.8, P < 0.0001; see Table S2
for all goodness-of-fit metrics). Our model identified 27 of the 32
species currently recognized as Vulnerable or Endangered on
the Red List plus an additional 15 species (Table S2). Of the
latter 15, 2 are currently listed as Least Concern and the
remaining 13 are Data Deficient on the Red List. Summing
the 27 species that were both predicted by our model and on the
Red List, the 5 species on the Red List but not predicted by our
model, and the 15 species predicted by our model but not on the
Red List gives a total of 47 species, or 37% of extant marine
mammals, likely to be at risk of extinction.

In decreasing order of importance, the primary predictors of
risk identified by our random forest model were body mass at
weaning, number of births per year, taxonomic group, geographic
range area, and social group size (Fig. 1 and Fig. S2). The first two
predictors, mean body mass at weaning and number of births per
year, highlight the influence of life history. Because all marine
mammals except polar bears give birth to only one offspring per
reproductive cycle, size of offspring at weaning multiplied by the
frequency of breeding gives productivity, or rate of biomass pro-
duction via reproduction (22). So, together, these two variables
index the speed of life history and are the primary determinants of
rmax, the maximum or intrinsic rate of population increase and the
capacity for species to recover from reduced populations after
threats have been removed. Rate of population increase after
depletion is important to marine conservation (29–31). For ex-
ample, baleen whales have fast life histories for their body size,
and several species, including humpbacks and gray whales (Meg-
aptera novaeangliae and Eschrichtius robustus), have shown strong
recoveries following the international ban on commercial whaling
(4, 30). Other taxa, including sea otters (Enhydra lutris) and
northern elephant seals (Mirounga angustirostris), have increased
exponentially after protection (30). The latter had been reduced
to 20–30 individuals by 1900, and despite very low genetic di-
versity, elephant seals increased at an estimated 8.3% per year to
a population of ∼170,000 today (23, 32). These results imply that
when species with high productivities fail to rebound rapidly after
protection, they have not achieved the near-maximal rates of
population growth expected on the basis of their life histories.
This suggests that the original environmental threats have not
been alleviated or that new threats, such as climate change, have
arisen to inhibit recovery (e.g., 33). Similar issues apply to species

Fig. 1. Relative importance, in rank order, of intrinsic and extrinsic predictors of marine mammal extinction risk. Numerical values of importance for each
predictor variable were calculated as the decrease in classification accuracy after predictor removal in a random forest of 500 trees. Model accuracy was
92% (Cohen’s kappa = 0.8, P < 0.0001; Table S2 and Fig. S2). “+” or “−” indicates the direction of correlation for the continuous variables. Drawings are by
Sharyn N. Davidson.
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with low productivities, but more time may be required to assess
whether failure to recover after protection is due to intrinsic life-
history characteristics or extrinsic environmental factors.
At the high-risk end of the spectrum were species with low

rates of production and so with slow life histories. These species
often belonged to specific taxa (orders, families, and genera),
suggesting constraints of intrinsic traits inherited from common
ancestors and therefore related to phylogeny. Interestingly, slow
speed of life history also has been shown to be a strong predictor
of risk in ungulates and terrestrial carnivores (34). Sirenians
(Order Sirenia: manatees and dugongs) are a good example of
marine mammals at the high-risk end of the spectrum. They
have low productivities and are the only herbivorous marine
mammals. All five extant species in the order are at risk (23),
and the giant Steller’s sea cow (Hydrodamalis gigas) was hunted
to extinction within a few decades after discovery by Europeans.
Most toothed whales also have low production rates, but they
have large geographic ranges and often form large social groups,
which helps offset risk. Pinnipeds, on the other hand, have rel-
atively high rates of production; however, walruses (Odobenus
rosmarus) and eared seals (Otariidae) generally have slower
rates than true seals (Phocidae), which can make them more
vulnerable. Nevertheless, some true seals, such as monk seals
(Monachus spp.), are critically endangered due to high human
impacts within their small geographic ranges (5). So, although
speed of life history is the most important predictor of extinction
risk overall, decision tree analyses emphasize that there are
multiple pathways to extinction, and risk usually cannot be at-
tributed to a single intrinsic or extrinsic variable (16) (Fig. 1).
Other intrinsic traits, including small geographic range area

and small social group size, were also important predictors,
consistent with traits identified for terrestrial mammals in gen-
eral (16) (Fig. 1 and Fig. S3). Small geographic range is a robust
predictor of risk across many vertebrate groups (16, 34–36), and
this includes species whose ranges have contracted significantly
due to human impacts (16, 37). In marine mammals, social group
size may reduce risk because of the advantages of sociality in
reducing predation and enhancing foraging. The endangered,
endemic Galápagos fur seal (Arctocephalus galapagoensis) (5, 23)
is a good example; it has one of the smallest ranges of all marine
mammals and a small social group size. Extrinsic environmental
variables were generally poorer predictors than were intrinsic
traits, perhaps in part because they are indirect and affect ex-
tinction by interacting with life history and other biological traits
and in part because environmental variables were obtained from
global databases that may be too coarse-grained to capture lo-
calized human threats.

Our analysis predicted that 13, or about one-third, of all Data
Deficient species may be at risk of extinction. One of these is the
boto (Amazon River dolphin; Inia geoffrensis). It and other river
dolphins are especially vulnerable because they have not only
slow life histories, but also small social group sizes and extremely
small geographic ranges. Although our analysis was not able to
evaluate extrinsic predictors for river dolphins (see Materials and
Methods), they do face intense human pressures from pollution,
fishing, and damming (e.g., by Brazil’s recently approved Belo
Monte hydroelectric dam, which will be the third largest in the
world). The walrus is another Data Deficient species predicted to
be at risk. It is threatened by ocean warming, which is reducing
sea ice used for breeding, feeding, and resting and leading to
increased shipping traffic, pollution, and development (38).
Several Data Deficient beaked whales (Ziphiidae) and other
whale and dolphin species were also predicted to be at risk. In
fact, none of the beaked whales have a designated conservation
status under the Red List (23). They are elusive, deep-sea
mammals that occur in low abundances and depend on critical
habitat like isolated deep-sea canyons (39). Because of their
deep-diving behavior, they appear to be especially vulnerable to
decompression sickness triggered by naval sonar (39).
Using the at-risk species identified by our model and the Red

List, we created maps showing the global distribution and hot-
spots of risk (Figs. 2–4). Hotspots were defined as cells with six or
more at-risk species, corresponding to the top 2% of geographic
grid cells (totaling about 12,950,000 km2). Globally, the marine
grid cells contained from 0 to 11 at-risk marine mammal species
(Fig. 2); cells with 6 or more at-risk species represent the 75th
percentile of at-risk marine mammal richness. We then mapped
marine mammal species richness (Fig. S4A), marine productivity
(ANPP) (19) (Fig. S4B), human impacts (1) (Figs. 3 and 4), and
Marine Protected Areas (MPAs) (40) (Fig. 4D) to relate the
geographic distribution of risk predicted by our model to the dis-
tributions of marine mammal species, extrinsic environmental
factors included in our model, and protected areas. We deter-
mined the correlations between risk and species richness and
ANPP, and calculated mean and range of the human impact index
(1) within each risk hotspot in ArcGIS v9.3 (Fig. S5). We also
overlapped our hotspots with the geographic distributions of total
human impacts (1), specific human impacts (including commer-
cial fishing, shipping, pollution, and sea-surface temperature
anomalies indicating recent climate change) (1), and MPAs (40)
(Figs. 3 and 4; Fig. S6).
Not surprisingly, there was broad agreement in the geographic

distribution of species on the Red List and those that our model
predicted to be at risk. Importantly, however, our model identi-
fied additional high-risk areas in the Indo-Pacific, around South

Fig. 2. Global distribution of marine mammal species at risk (model-predicted plus IUCN Red List species).
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Africa, New Zealand, and Patagonia, and along the western
coasts of South America and central Africa (Fig. 2) that are not
currently recognized (12). In general, the spatial distribution
of risk correlated strongly with that of marine mammal species
richness (r= 0.58, n= 50,927, P < 0.0001) and, to a lesser extent,
with net primary productivity (r = 0.18, n = 50,927, P < 0.0001)
(Fig. S4). Most at-risk species and all 13 hotspots were distributed
along coastlines (Figs. 2 and 3). Coastal areas with cold currents
and upwelling are highly productive and support large pop-
ulations and diverse species of marine mammals (12). However,
most coastal areas also experience high levels of human impact
(1), and our random forest model indicated that species that live,
forage, or breed along coasts are at higher risk. Consequently,
other coastal regions, in addition to the specific hotspots identi-
fied here, should be considered as high priority areas for con-
servation. Some regions of the open ocean, such as the North
Pacific Transition Zone, also warrant protection because they are
highly productive, have high abundance and species diversity of
large predators (including marine mammals), and have been
heavily impacted by human activities (41, 42).
Our analysis showed that 74% of marine mammal species ex-

perience high levels of human impact [impact index>60 (1)] within
their geographic ranges (Fig. S7). These reflect the cumulative
effects of many factors, including fishing, shipping, pollution, sea-
surface temperature change, ocean acidification, invasive species,
oil rigs, and human population density (1). However, levels of
human impact varied spatially across most species’ geographic
ranges and even within hotspots (Fig. 3 and Fig. S5). Localized

human impacts were extremely high in the Indonesian, Japanese,
Californian, and northern Australian hotspots (Fig. 3 and Fig. S5).
Overfishing and bycatch are among the leading anthropogenic

threats to marine mammals worldwide (5) and were particularly
high in the hotspots of the eastern Aleutian Islands and Patago-
nia, and especially in the Indonesian hotspot in the biologically
rich Indo-Pacific (Fig. 4A). Shipping and pollution are widespread
throughout the Northern Hemisphere (1) and impact marine
mammals through direct ship strikes, noise (e.g., ship, military,
and industrial activities), and other forms of pollution (e.g., oil
spills, chemical wastes, entanglement in abandoned fishing gear,
ingestion of plastic debris) (43). These impacts are especially high
in the Californian and Japanese hotspots, where there are major
human population centers and shipping routes (Fig. 4B) (1).
Climate and oceanographic changes are widespread and esca-
lating throughout the world’s oceans (1, 3) and figure importantly
in some of the higher latitude hotspots (e.g., western and eastern
Aleutian Islands, Japan, and South Australia) where temperature
changes have been more dramatic (Fig. 4C). The prospect of a
warming ocean is especially serious for marine mammals, such as
polar bears, walruses, and several species of seals, which occur at
high latitudes and depend on sea ice for feeding, breeding, and/or
resting (38).
The risk hotspots cover only 1.7% of the global oceans, but

they include at least parts of the geographic ranges of 88 (70%)
marine mammal species. These hotspots do not capture all
regions and habitats in need of protection, however, because
high levels of human impact threaten populations and species of
marine mammals well beyond the hotspots. For example, the
vaquita (Phocoena sinus), perhaps the single most endangered
marine mammal species, is threatened by localized artisanal
fishing activity in inadequately protected areas in the Gulf of
California (5, 44). Ship strikes also are the primary threat to the
world’s remaining ∼350 North Atlantic right whales (Eubalaena
glacialis), whose geographic range overlaps with intensive ship-
ping activity (45) (Fig. 4B). Climate change is likely to have wide-
ranging, disruptive impacts on many species throughout the
world’s oceans, but these are only beginning to be understood
(38, 46). Nevertheless, the distribution of hotspots of at-risk
species in relation to human impacts provides information that
can be used to manage key areas for marine mammal protection.
Importantly, the hotspots of risk overlap little with current

Marine Protected Areas (Fig. 4D and Fig. S6). International
efforts are underway to increase MPAs from 0.7% of the world’s
oceans currently to 10% by 2020 (39, 47). The magnitude and
geographic distribution of extinction risk that we identify here is
key to informing this process. Although previous studies have
identified global patterns of marine diversity and current Red
List status (12, 48–50), our study builds on this work not only by
mapping the 32 species currently on the Red List, but also by
adding the additional 15 species predicted to be at risk by our
model. In addition, our maps (Figs. 2–4) provide insights into the
geographic overlap of risk, human impacts, and protected areas
across the world’s oceans. Our results, coupled with previous
studies, provide an important basis for specific conservation
actions. Still needed, however, are more and better biological
data, especially on migratory routes, and the location of feeding,
calving/pupping, and breeding grounds to protect the geographic
areas and networks of critical habitats on which highly mobile
marine animals and other taxa depend (41, 51).

Conclusions
We show that the most important predictor of extinction risk is
speed of life history because this captures the capacity of a species
to rebound from human impacts. Our model also shows that in-
trinsic traits are more important predictors of risk than extrinsic
factors because they are measures of the inherent susceptibility
to human impacts and ability to recover from them. Therefore,
our analysis emphasizes the importance of understanding the
basic biology and ecology of marine mammals to assess the cor-
relates and causes of extinction and to implement science-based

Fig. 3. Global hotspots of marine mammal species extinction risk, overlaid
with human impact on the world’s oceans (1). Hotspots show the top 2%
of geographic grid cells for at-risk species (model-predicted plus IUCN Red
List species). Panels A–E provide a magnified view of hotspots.
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conservation. Unfortunately, such basic information remains
poorly known for most species, and not just for those considered
Data Deficient, but new technologies are beginning to provide
new and better data on both the biology of marine mammals and
the ecology of the oceans (51). Incorporating this key information
into scientifically sound, well-informed management of local and
regional ecosystems has the potential to mitigate the threats
facing many species. In addition, however, because of the large
magnitude and spatial scale of anthropogenic impacts and the
wide ranges of many species, conservation of marine mammals
will require unprecedented global effort and political will. There
is little time to avoid widespread declines and extinctions of
marine mammals with large attendant ecological, economic, so-
cial, and political consequences.

Materials and Methods
Database. Our database consisted of 125 (of 128) marine mammals for which
sufficient species’ trait data were available. We collected data on intrinsic
predictor variables: adult body mass, body mass at weaning, number of births
per year, number of offspring per reproductive bout, geographic range size,
social group size, trophic group, habitat (coastal, oceanic), foraging location
(continental shelf, continental slope, epipelagic, mesopelagic/bathypelagic
zones), taxonomic order, diet breadth (generalist, specialist), and migratory
behavior. We also gathered data on extrinsic variables: mean ANPP (19) and
mean human impact index (1) within each species’ geographic range. Our
geographic range area data were from Geographic Information System
maps used in Pompa et al. (12), which were based on Reeves et al. (52). We
used a dichotomous response variable to represent extinction risk: species

classified as Vulnerable, Endangered, Critically Endangered, or Extinct by
the IUCN were considered “threatened”, and species classified as Near
Threatened or Least Concern were considered “non-threatened” (23).

Random Forest Modeling. Following the modeling approach used in Davidson
et al. (16), we tested for quantitative relationships between predictor vari-
ables and extinction risk using the randomForest package in R version 1.10.1
(24, 25, 53). For our main random forest model (Fig. 1), we included only
those species that occur in the marine environment. Species found solely in
rivers or lakes were excluded from the model because we were unable to
obtain extrinsic data on ANPP and human impacts that were comparable to
those of the marine system (1, 19). However, to provide predictions of threat
status for freshwater species as well, we ran a separate random forest model
that included only the intrinsic variables for all species (freshwater and
marine) to predict risk for marine mammals occurring in river and lake
environments. The intrinsic variables included were the same as those in the
main model (Fig. 1); only the extrinsic variables of ANPP and human impact
were excluded from this intrinsic model. To predict risk for Data Deficient
species (Table S1), we used the main random forest model to predict risk for
marine species and the intrinsic model for freshwater species. The intrinsic
model was comparable in accuracy to the main model because the extrinsic
variables were not especially strong predictors of risk. Variables that did not
improve accuracy were not included in the final models, and differences in
importance between predictors were quantified with pairwise two-tailed
z-tests (α = 0.05) (53).

Spatial Analyses. We used ESRI’s ArcGIS v9.3 to calculate spatial statistics for
the two extrinsic variables used in the main random forest model, ANPP (19)
and human impact (1), within the geographic range of each species. We

Fig. 4. Global hotspots of marine mammal
species extinction risk, overlaid with the geo-
graphic distributions of the leading human
impacts (1) on marine mammals and with Ma-
rine Protected Areas (MPAs) (39). (A) Fishing
intensity. (B) Ship traffic and pollution. (C) Sea-
surface temperature change: 1985–2005. (D)
World distribution of MPAs (see also Fig. S6 for
magnified view of D). Hotspots show the top
2% of geographic grid cells for at-risk species
(model-predicted plus IUCN Red List species).
Maps A, B, and C show examples of species
predicted to be at risk by our model that occur
within the hotspots, or other highly impacted
regions, and whose populations are threatened
by fishing, shipping, pollution, or climate
change. Drawings are by Sharyn N. Davidson.
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used the zonal statistics tool to overlay each species’ range on top of the
extrinsic variable raster dataset and counted pixels that fell within each
range. We then used this tool to calculate mean values of ANPP and human
impact experienced by each marine mammal species.

Our map of species at risk was created by overlapping geographic ranges
of marine mammal species identified as at risk by our model and those on the
Red List, and then by counting howmany of these species were found in each
spatial grid cell (Fig. 2). Hotspots were defined as grid cells ≥75th percentile
of at-risk species, which corresponds to about 2% of all geographic grid cells
(Figs. 3 and 4). Hotspot cutoff values near 2% have been used widely in both
marine and terrestrial conservation studies (12, 54, 55). Note that marine
mammals occurring in rivers and lakes were not included in our risk maps
because the extrinsic data for the marine and freshwater environments are
not comparable. Also, included in our maps were five species not predicted
by our main model, but listed by the IUCN as Vulnerable (i.e., at risk)
(Table S1).

We created maps on the geographic distribution of species richness, en-
vironmental variables, and MPAs to understand how they relate to the
distribution of risk. Our map of species richness was similar to those pro-
duced elsewhere (especially ref. 12) and was created by overlapping the
geographic ranges of all marine mammal species and counting how many

species occur in each spatial grid cell. Our map of ANPP was based on Ore-
gon State University’s map of ocean productivity (19), and our maps of
human impacts were obtained from Halpern et al. (1). We measured cor-
relation of risk with richness and ANPP and used the zonal statistics tool to
calculate the mean human impact index (1) within each hotspot (Fig. S5).
Note that data on commercial fishing are based on 2008 values (1) (Fig. 4A).
Because fishing impacts are highly variable over time and space, the map
showing global distribution of fishing impacts may not accurately reflect
present or future impacts and should be interpreted cautiously (Fig. 4A).
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