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Body size variation across the Metazoa is immense, encompassing 17 orders of magnitude in biovolume.

Factors driving this extreme diversification in size and the consequences of size variation for biological

processes remain poorly resolved. Species diversity is invoked as both a predictor and a result of size

variation, and theory predicts a strong correlation between the two. However, evidence has been presented

both supporting and contradicting such a relationship. Here, we use a new comprehensive dataset for

maximum and minimum body sizes across all metazoan phyla to show that species diversity is strongly

correlated with minimum size, maximum size and consequently intra-phylum variation. Similar patterns

are also observed within birds and mammals. The observations point to several fundamental linkages

between species diversification and body size variation through the evolution of animal life.
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1. INTRODUCTION
Early work by Hutchinson & MacArthur (1959) and May

(1988) proposed a relationship between body size and

species diversity, implying that size-biased processes are

paramount to the radiation of life. For example, elevated

species richness in small-bodied groups might reflect a

greater amount of usable space (Hutchinson &

MacArthur 1959; Kozlowski & Gawelczyk 2002). Body

size may affect range size (Gaston & Blackburn 1996),

population size (Damuth 1981) and a variety of other

ecological and life-history traits (Peters 1983), linking

richness and size through size-biased extinction and

speciation (Stanley 1973; Maurer et al. 1992; Kozlowski &

Gawelczyk 2002). Hard boundaries on body size due to

anatomical and physiological constraints (Hanken & Wake

1993; Chapelle & Peck 1999;McClain& Rex2001;McClain

et al. 2006; Makarieva et al. 2008) may prevent some clades

from becoming speciose. Alternatively, a flexible bauplan

that permits unimpeded exploration of size extremes and

novel niches could promote clade diversification.

Conversely, a strong relationship between size variation

and richness (ceteris paribus) is also expected if body size

variation is a consequence of a passive diffusion process in

a radiating clade (Trammer 2002, 2005), such that

maximum size is positively and minimum size is negatively

correlated with diversity. A passive diffusion model of

body size evolution was invoked by Stanley (1973) to

explain Cope’s rule, the tendency for clades to evolve

larger body size over time. This model of evolution

suggests both a time component (size variation increases
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over the temporal duration of clade; Jablonski 1997) and a

diversity component (reflecting a relationship between size

variance and speciation events; Trammer 2002). Evidence

for Cope’s rule is mixed, but studies do indicate an

increase in body size variation in vertebrates (Gillman

2007) and molluscs (Jablonski 1997) over time. Previous

tests for a correlation between richness and body

size provide support both for (based on maximum size;

Trammer 2002) and against (based on median size; Orme

et al. 2002) a relationship.

Given the differences between previous approaches,

and their often-limited taxonomic scope, it remains

unclear whether a relationship exists between biodiversity

and body size variation across the Metazoa. Here, we

test whether richness is significantly correlated with

maximum body size, minimum body size and overall

body size range among clades. After conducting an

extensive literature survey and consulting with taxonomic

experts, we compiled a comprehensive dataset on the

largest and smallest known species for 26 metazoan phyla

(of potentially 34). Size is quantified as biovolume,

a measure of the space the organism occupies in three

dimensions, based on linear measurements and approxi-

mations of organismal shape. For most phyla, the size

range is well characterized (e.g. Mollusca), and for others

it is reasonable to assume that discovery of new species

would not appreciably increase size range in logarithmic

space. For species richness we used estimates based on

current knowledge, undoubtedly representing underesti-

mates of global intra-phylum diversity. However, these

estimates do provide an accurate assessment of ordinal

ranking based on richness among phyla (e.g. ArthropodaO
PoriferaOTardigrada) that is essential for our analyses. We

also examined body size–richness relationships in two

well-studied classes of vertebrates—mammals and birds—

using published body size databases. In all analyses,

phylogenetically independent contrasts were used to

control for the influence of shared evolutionary history.
This journal is q 2009 The Royal Society
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We find that species diversity is strongly correlated with

minimum size, maximum size and consequently intra-

phylum size variation across Metazoa and within two

vertebrate classes.
2. MATERIAL AND METHODS

(a) Dataset

We constructed a database of the largest and smallest species, by

biovolume, for 26 metazoan phyla and three subphyla (see

appendix 1 in the electronic supplementary material). Eight

phyla were not included (Placozoa, Monoblastozoa, Rhombo-

zoa, Orthonectida, Kinorhyncha, Entoprocta, Cycliophora and

Echiura) because insufficient data existed to quantify bio-

volume or determine the largest and smallest species. One

phylum, the Monoblastozoa with one species, was excluded

also because of questionable accuracy as an erected phylum or

a genuine species. The three subphyla for the Chordata were

included because the three clades represent fundamentally

different body plans and because of the availability of data. The

largest and smallest species were determined by consultation

with experts, taxonomic monographs and comprehensive

literature searches. Linear measurements (length, width, height

and diameter) were taken from published records. In the

few cases where insufficient data existed in the published

literature to accurately assess size, we gathered estimates from

specialists in thegroup. Linear measurementswereconverted to

biovolume through formulae for shapes approximating the

organismal shape (see appendix 1 in the electronic supple-

mentary material for the formulae used). In some cases,

additional linear measurements not available in the literature

were required for the estimation of biovolume. These additional

measurements were estimated from published photos

and illustrations.

Body mass data for mammals and birds were obtained

from published sources (Dunning 1992; Smith et al. 2003).

For both groups, we used taxonomic families as the unit of

analysis, taking the maximum and minimum body sizes and

species richness of each family.
(b) Phylogenetically independent contrasts

To control for the influence of shared evolutionary history

on diversity and body size, we performed phylogenetic

independent contrast analyses. Because many alternative

topologies for the relationships among the metazoan phyla

have been proposed, we repeated our analysis on two different

phylum-level phylogenies (fig. 1 in Orme et al. 2002 and fig. 1

in Dunn et al. 2008). We used a recently published supertree

of all mammals (Bininda-Emonds et al. 2007) to assemble a

phylogeny of mammalian families for analysis. Similarly, we

took advantage of the ‘Early Bird’ project’s recent phylogeny

of birds (Hackett et al. 2008) to estimate the relationships

between avian families. For all trees, a constant arbitrary

length was assigned to each branch. Contrasts were

calculated using the PDAP package (Garland et al. 1993)

implemented in MESQUITE v. 1.01 (Maddison & Maddison

2008). Contrasts were standardized and positivized on the

x -axis following the methods of Garland et al. (1992), and

linear regression through the origin was performed. Phylo-

genetically correct regressions were visualized in the original

data space following the methods of Garland & Ives (2000).
Proc. R. Soc. B
3. RESULTS AND DISCUSSION
Biovolume (mm3) ranges 17 orders of magnitude among

the modern metazoans, from the blue whale (Balaenoptera

musculus, 1.9!1011 mm3) to small rotifers, nematodes,

polychaetes, gastrotrichs and copepods (7.8!10K6 to

5.1!10K5 mm3; see appendix 1 in the electronic

supplementary material). Size variation among the poly-

phyletic invertebrates is a substantial 15 orders of magnitude,

ranging from the giant squid (Architeuthis dux, 5.9!
109 mm3) to the aforementioned minuscule invertebrates.

Even a cursory viewing of the dataset suggests a

qualitative relationship between species richness

and biovolume range among metazoan phyla/subphyla

(see appendix 1 in the electronic supplementary material).

Both quantitative, phylogenetically corrected and uncor-

rected tests yield significant correlations between richness

and both maximum (positive correlation) and minimum

(negative correlation) biovolume (tables 1 and 2; figure 1).

Richness is correlated more strongly with maximum rather

than minimum biovolume among the Metazoa (tables 1

and 2). Total biovolume range is the strongest correlate of

richness, suggesting that although the correlation with

minimum biovolume is weaker, it remains important

(tables 1 and 2; figures 1c and 2). Surprisingly, minimum

and maximum biovolume (Bvmin and Bvmax, respectively)

among all phyla and subphyla are not significantly

correlated with each other (non-corrected: rZ0.33,

pZ0.1432; corrected: rZ0.11, pZ0.2222). These results

also clearly show that there is no relationship, or at

best only a weak relationship, between mean or median

body size values and richness (Orme et al. 2002).

In families of mammals and birds, relationships

between richness and body size are stronger after

phylogenetic correction, although minimum mass for

both groups and size range for birds are significant in the

raw data (table 1). The importance of phylogeny here is to

be expected, given the greater phylogenetic relatedness

and greater non-independence among avian and mam-

malian families compared with the metazoan phyla. When

phylogenetic relatedness is accounted for, regressions

show strong relationships between species richness and

both minimum and maximum body mass (g) among

taxonomic families (table 2). The slopes of these

relationships are shallower than across metazoan phyla,

and minimum size is correlated more strongly with

richness than maximum size (tables 1 and 2). Mass

range is the strongest correlate of richness among avian

and mammalian families (table 2; figure 2). In contrast to

metazoans, maximum and minimum sizes are significantly

correlated in both the corrected (birds: rZ0.41, p!0.001;

mammals: rZ0.68, p!0.001) and non-corrected data

(birds: rZ0.88, p!0.001; mammals: rZ0.92, p!0.001).

(a) Body size and biodiversity metrics

Three potentially confounding factors could influence the

general results here. First is the use of biovolume for

metazoan phyla, dictated by practicality and availability of

measurements, as opposed to mass. The large range

of biovolume values and log transformation minimize this

impact. Use of biovolume also does not account for

differences in actual organic material weights. For

example, the largest cnidarian, Cyanea arctica, and

poriferan, Aphrocallistes vastus, occupy approximately the

same biovolume as the giant squid, A. dux, but they do

http://rspb.royalsocietypublishing.org/


Table 2. Phylogenetically corrected regressions between richness (R) and maximum body size, minimum body size and body size
range. (Statistics follow table 1.)

n Pearson’s r RMA slope OLS slope r 2 p-value

R versus max size
metazoan phyla

Orme tree 27 0.52 2.77 1.47 0.28 0.003
Dunn tree 27 0.64 2.52 1.62 0.41 !0.001

bird families 98 0.36 0.87 0.32 0.13 !0.001
mammal families 105 0.13 1.48 0.20 0.02 0.160

R versus min size
metazoan phyla

Orme tree 27 K0.51 K1.95 K1.01 0.26 0.004
Dunn tree 27 K0.55 K1.87 K1.03 0.31 0.002

bird families 98 K0.61 K0.90 K0.55 0.37 !0.001
mammal families 105 K0.49 K1.63 K0.81 0.25 !0.001

R versus size range
metazoan phyla

Orme tree 27 0.74 3.35 2.47 0.55 !0.001
Dunn tree 27 0.79 3.33 2.65 0.63 !0.001

bird families 98 0.90 0.96 0.87 0.81 !0.001
mammal families 105 0.80 1.25 1.01 0.65 !0.001

Table 1. Non-phylogenetically corrected regressions between richness (R) and maximum body size, minimum body size
and body size range. (Statistics are given for Pearson’s r (correlation coefficient), reduced major axis (RMA) regression and
ordinary least-squares (OLS) regression. Size is measured as biovolume (mm3) in metazoan phyla and mass (g) in birds
and mammals. Bird and mammal analyses were conducted after the removal of monotypic families. Italic font indicates
non-significant relationships.)

n Pearson r RMA slope OLS slope r 2 p-value

R versus max size
metazoan phyla 27 0.53 2.86 0.71 0.28 0.0036
bird families 98 0.10 K1.22 K0.09 0.01 0.3372
mammal families 105 K0.17 K2.76 K0.37 0.03 0.1649

R versus min size
metazoan phyla 27 K0.40 K1.77 K0.71 0.16 0.0335
bird families 98 K0.56 K1.29 K0.72 0.31 !0.0001
mammal families 105 K0.46 K2.93 K1.35 0.21 !0.0001

R versus size-range
metazoan phyla 27 0.80 2.80 2.23 0.63 !0.0001
bird families 98 0.20 1.48 0.28 0.04 0.0164
mammal families 105 K0.14 K2.79 K0.11 0.02 0.6881
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not have similar organic material weights. For medusae,

ash-free dry weight is less than 2 per cent of total weight

(Lucas 1994) and for poriferans between 9.3 and

12.1 per cent (Ricciardi & Bourget 1998). By contrast,

ash-free dry weight is 13.6–29.2% of wet weight in

cephalopods (Ricciardi & Bourget 1998). This implies

that the actual size range of cnidarians and poriferans is

smaller than quantified here. However, a reduction in

their size range would strengthen the correlation between

richness and maximum size.

The second factor that may affect our interpretation is

that estimates of species richness reflect only our current

knowledge and represent an underestimate of the actual

richness within a phylum. For example, the size range of

Priapulida (figure 1c) is far greater than expected from its

16 currently described species, indicating that unknown

biodiversity may increase richness estimates for this group

by at least an order of magnitude. However, a Spearman’s

rank-order test also produces strong, significant relation-

ships (Bvmax: rZ0.68, pZ0.0004; Bvmin: rZK0.73,

p!0.0001), implying that revised estimates of richness
Proc. R. Soc. B
would have to drastically alter the ordinal ranking of

phyla to affect our results. Furthermore, change in the sign

of the slope would require both gross overestimates of

species-rich groups and gross underestimates of species-

poor groups.

Third, the discovery of new species may increase the

range of body sizes in the least studied groups. For some

phyla, the size range is reasonably characterized

(e.g. Mollusca) and for others it may be unwarranted to

assume that an undiscovered giant exists that is substan-

tially larger than any known species. Nevertheless, for this

to influence the results, the effect would need to occur

primarily in species-poor taxa and the new species would

need to be at least twice the size of the largest or half of the

smallest known species.

(b) Linkage between diversification and

morphospace exploration

Evolutionary radiation in morphospace often coincides

with increases in taxonomic richness in the initial

diversification of a clade (Foote 1993). In many cases,

http://rspb.royalsocietypublishing.org/
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Figure 2. Log2 body size range between the largest
and smallest species versus log2 richness for (a) mammalian
families ( yZ1.01xC1.14, r 2Z0.65, p!0.0001), (b) avian
families ( yZ0.87xC0.37, r 2Z0.81, p!0.0001) and
(c) metazoan phyla ( yZ1.52C11.16, r 2Z0.55, p!0.0001).
Outliers (green) represent phyla that occupy physically
space-limited habitats. The vertebrates are indicated in
orange. Phylogenetically correct regression lines (ordinary
least-square) with confidence intervals are plotted in the
original data space following the methods of Garland & Ives
(2000). As similar results were obtained from the two
metazoan phylogenies, only results from the Orme tree are
shown. Overall, body size range correlates strongly with
richness among groups both at higher and lower levels
of taxonomic organization.
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Figure 1. The relationship between body size and species
richness among metazoan phyla and subphyla. (a) Log2

biovolume of the largest species (Bvmax) of a taxon versus its
log2 richness. (b) Log2 biovolume of the smallest species
(Bvmin) of a taxon versus its log2 richness. (c) Range between
the largest and smallest sized species (indicated by lines)
versus log2 richness. Increased richness among metazoan
phyla is correlated with an increase in maximum size,
a decrease in minimum size and an increase in overall body
size range. A group of outliers (green) represents phyla that
occupy physically space-limited habitats. Vertebrates (Ver,
orange) also have a greater minimum size than expected
from their richness alone. Bryozoa (Bry, grey) is shown with
both the largest autozoid size and the largest colony
size (connected with grey line). Aca, Acanthocephala; Ann,
Annelida; Art, Arthropoda; Bra, Brachipoda; Bry, Bryozoa;
Cha, Chaetognatha; Cnd, Cnidaria; Cph, Cephalochordata;
Ctn, Ctenophora; Ech, Echinodermata; Gas, Gastrotricha;
Gna, Gnathostomulida; Hem, Hemichordata; Lor, Lorici-
fera; Mol, Mollusca; Nph, Nematomorpha; Nrt, Nemertea;
Ntd, Nematoda; Ony, Onychophora; Pho, Phoronida;
Plt, Platyhelminthes; Por, Porifera; Pri, Priapula; Rot,
Rotifera; Sip, Sipuncula; Tar, Tardigrada; Uro, Urochordata;
Ver, Vertebrata.
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morphological extremes are reached early in a clade’s

history with subsequent diversification simply filling in

the previously defined morphospace (Foote 1997). By

contrast, body size range appears to continuously increase

through time, a trend documented in a variety of

taxa (Alroy 1998; Trammer 2005; Hunt & Roy 2006;
Proc. R. Soc. B
Novack-Gottshall & Lanier 2008) and across all life

(Payne et al. 2009). Punctuating these gradual increases

in size are sudden jumps in maximum size such as the K–T

boundary for mammals (Alroy 1998) or at ca 1.9 Ga and

0.6–0.45 Ga during the evolution of life (Payne et al.

2009). Our results suggest that continued expansion of

body size range over time parallels diversification across

the Metazoa. This linkage not only occurs at broad

phylogenetic scales but appears to apply equally for

individual taxa such as mammals, birds, bivalves, trilo-

bites, cetaceans and crinoids (Trammer 2005).

The increase in size range within a clade appears to

follow in lock-step with increases in the number of species.

One mechanism for this concordance is simple morpho-

logical diffusion during the radiation of a clade, where

increases and decreases in size are equally likely to occur.

This diffusive mechanism is invoked to explain Cope’s rule

http://rspb.royalsocietypublishing.org/
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and other patterns of body size evolution as an increase

in body size variance rather than persistent directional

selection (Jablonski 1997). Our observations are consist-

ent with three main expectations of passive diffusion: both

maximum and minimum body sizes show strong relation-

ships with richness; body size range increases with

increasing clade richness; and the slopes of maximum

and minimum body sizes with richness mirror each other.

However, in a purely diffusive model, a correlation

between maximum and minimum sizes might be

expected, a result not seen among Metazoa. This

discrepancy might be explained by a limit to either

maximum or minimum size (e.g. reflecting barrier,

McKinney 1990; Kozlowski & Gawelczyk 2002) in some

clades, while body size range continues to expand away

from the barrier in the other direction. Teasing apart

passive versus directional trends may be difficult, as

patterns resembling passive diffusion may be produced

by the interactions of a multitude of context and scale-

dependent effects involved in dividing niche space among

body sizes (Jablonski 1997).

The second possible mechanism behind our obser-

vations is that body size represents an important

dimension of the niche, and substantial increase in the

number of species requires expansion of the size morpho-

space. This implies that competitive displacement has to

some extent limited the number of species that can be

‘packed’ between size extremes within a clade. The

concept that differences in body size promote niche

differentiation is well established (Hutchinson 1959;

Grant 1968; Schoener 1970; Wilson 1975). For example,

body size relates to food partitioning, space division and

trophic level (Schoener 1968; Kerr & Dickie 2001;

Marchinko et al. 2004; Layman et al. 2005), all important

in separating species in niche space. Thus, a flexible

bauplan and the greater body size range that results may

allow for greater niche differentiation in some phyla. For

example, over 10 orders of magnitude in biovolume exist

between the smallest and the largest species in eight phyla

(Nematoda, Annelida, Platyhelminthes, Arthropoda,

Cnidaria, Porifera, Mollusca and Chordata; figure 1a–c),

coinciding with the eight most speciose phyla among the

metazoans (5000–137 000 species). This immense size

variation parallels an equally expansive intra-phylum

range in niche space (e.g. free living, parasitism, sessile,

mobile, scavenging, predatory, filter and deposit feeding).

Indeed, six of these phyla have successfully radiated into

all three major biomes (i.e. freshwater, terrestrial and

marine) on the Earth.

(c) Limits to size extremes and

evolutionary novelty

Conspicuous outliers (clades outside the 95% confidence

intervals of the relationship) do exist in the overall

relationship between species richness and maximum and

minimum biovolume. Gastrotricha, Tardigrada, Rotifera,

Loricifera and Gnathostomulida, groups restricted to

water films and interstitial spaces, are outliers in the

relationship between maximum size and richness

(phyla coloured green in figure 1a), and have smaller

maximum sizes than expected for their richness. Inter-

stitial habitats severely constrain organismal size through

physical space limitation as individuals are unable to shift

sediment particles and are confined to pore spaces
Proc. R. Soc. B
(Schwinghamer 1981). Size bins adjacent to interstitial

sizes in biomass spectra are well known to correspond to

low biomass and potential fitness troughs (Warwick &

Clarke 1984; Kerr & Dickie 2001). Experimental evidence

indicates that interstitial nematodes readily obtain much

larger sizes when grown in a less confining medium

(Anderson & Coleman 1977). Rotifers found in space-limited

habitats (e.g. water films on mosses, damp soil, interstitial

spaces) are also much smaller (45–57 mm in length) than

pelagic forms (R. Shiel, personal communication, 2005).

Among metazoan phyla, vertebrates are a distinctive

outlier in that they have a larger minimum size than

expected from their diversity (figure 1b). Minimum size in

endothermic vertebrates is thought to be tightly con-

strained by both environmental factors and metabolic

demands (Tracy 1977). Miniaturization of vertebrates,

including the smallest known fish, Paedocypris progenetica,

is often a result of developmental truncation (Hanken &

Wake 1993). Within vertebrates, eight outlying families of

birds have smaller body size ranges than expected given

their diversity (figure 2). In these groups (seven passerine

families and the hummingbirds), size constraints related to

the physiology of flight may limit maximum size. Similarly,

in mammals, several families of bats, fossorial rodents and

arboreal primates also show smaller body size ranges than

expected, indicating possible body size constraints associ-

ated with those lifestyles. Within arthropods, it is also clear

that the subphylum Hexapoda, containing insects, has

appreciably larger species richness compared with

the subphylum Crustacea, despite the considerably larger

size range in the latter. This probably reflects both the

extraordinary niche diversification of insects, possibly

unrelated to body size, and the relative underestimation

of total crustacean diversity, especially among smaller

body sizes.

Despite size constraints on either maximum size

(interstitial groups) or minimum size (vertebrates), both

groups continue to expand their size range in the direction

opposite the constraint. Gastrotrichs, rotifers, gnathosto-

mulids and loriciferans all contain species much smaller

than predicted by their richness alone (figure 1b). In other

clades, key innovations in niche space were required.

Groups such as nematodes, with many interstitial

members, evolved fundamentally different niches such as

parasitism to expand their size range. For example, the

largest species is Placentonema gigantissima, a 6–9 m long

parasite occurring in the placentas of sperm whales.

Buffered environmental conditions, a continuous food

source and relaxation of mechanical requirements of

locomotion (Kirchner et al. 1980) have allowed parasitic

forms to reach much larger sizes than their free-living

relatives in nematodes (Kirchner et al. 1980), amphipods

(Poulin & Hamilton 1995) and copepods (Poulin 1995).

The size range for vertebrates has greatly expanded

through the evolution of the baleen whales, such as the

blue whale, B. musculus, perhaps a maximum size limit set

by either bioenergetics or life-history constraints (Dobson &

Headrick 1995; Corkeron & Connor 1999). The evolution

of colonial forms was also important in increasing size range.

In Bryozoa, colonial forms greatly expand the size range

from either the smallest autozoid (nine orders of magnitude)

or the smallest colony (seven orders of magnitude) to the

largest colony (figure 1a,c), and may explain its relatively

heightened richness. Increases in colony size coincide with

http://rspb.royalsocietypublishing.org/
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increases in colony individuation,dispersal ability, resistance

tophysical stress, homeostasis and division of labour, but the

extent to which large colony size may be favoured by natural

selection remains unknown (McShea & Venit 2002).
4. CONCLUSIONS
Despite the distinctive selection pressures probably

affecting individual phyla, we demonstrate a remarkably

consistent relationship between richness and body size

minimum, maximum and range across metazoan phyla

and two vertebrate classes. These relationships also

remain when hypotheses of phylogeny are used for

independent contrasts. The patterns are consistent with

the predictions of passive diffusion of body size during

evolution. From an alternative perspective, we provide

preliminary evidence that linkages between body size

variation and niche diversity may underlie these relation-

ships. Limits to body size within phyla appear to have been

met with either evolutionary innovation in organismal

complexity or radiation into fundamentally different

lifestyles. Further research with an emphasis on the fossil

record will be required to distinguish between these two

alternative scenarios.
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