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Database. We compiled a global dataset of 4,420 species of
mammals, excluding cetaceans and species listed under criterion
B of the IUCN Red List (see later discussion for more details).
The dataset includes taxonomy and a number of ecological and
intrinsic characteristics of each species, including body mass
(log10 g), mass-specific production rate (1, 2), habitat mode
(aquatic, arboreal, fossorial, marine, marine births on land,
terrestrial, or volant), trophic category (carnivore, herbivore, or
omnivore), activity period (nocturnal, diurnal, or both), geo-
graphic range size (log10 km2), home range size (log10 km2),
population density (log10 number of individuals/km2), sociality
(social or not), average group size (log10 number of individuals),
and type of landmass (range limited to islands, found on both
island and continent, or continental). Note that geographic
range was based on the historic range, because the true current
range is not known for most species (3, 4). These ecological
characteristics were chosen using existing knowledge from other
extinction risk studies (5–9) and on the basis of data availability.
The IUCN Red List status also was recorded for each species.
We used the IUCN 2007 Red List and updated it with the data
currently made available for the IUCN 2008 Red List, using
‘‘Table 7: Species changing IUCN Red List status’’ (10).

The IUCN lists threatened (vulnerable or higher) mammal
species under 4 criteria (11): (i) Criterion A: species listed
because of recent population declines; (ii) Criterion B: species
listed simply because of limited geographic occurrence, regard-
less of population status; (iii) Criterion C: species listed because
of low abundance (� 2500 individuals) resulting from ongoing
population declines; and (iv) Criterion D: species listed because
of extremely low abundance (� 250 individuals). To avoid
potential circularity in models evaluating extinction risk, similar
studies have restricted their analysis of threatened species to
those listed only under criterion A, because these species reflect
recent population declines (7, 9, 11); others have adopted a less
restrictive approach, excluding only the species listed under
criterion B because of their restricted geographic ranges (12). In
this paper, we follow the latter approach and exclude only the 362
species listed under criterion B to avoid potential circularity
when using geographic range as a predictor. We included species
listed under criteria C and D because our data are historic
estimates of geographic range and population density (the 2 key
components of species abundance) and thus are not circular with
the IUCN listing criteria. We necessarily excluded 341 IUCN
data-deficient species from the main dataset but predicted their
threat status later using our model.

Sources. Data were compiled from the following sources:
(a) Smith FA, et al. MOM (2003) Ecology 84:3402. (MOM v.6,

an updated version of Smith, et al. 2003).
(b) Kelt DA, Van Vuren DH (2001) The ecology and mac-

roecology of mammalian home range area. Am Nat 157:637–645.
(Dataset was not made publicly available and was kindly pro-
vided by the authors.)

(c) Damuth MJ (1981) Population density and body size in
mammals. Nature 290:699–700. (Dataset was not made publicly
available and was kindly provided by the author.)

(d) Ceballos G, Ehrlich PR (2002) Mammal population losses
and the extinction crisis. Science 296:904–907.

(e) Ceballos G, Ehrlich PR, Soberon J, Salazar I, Fay JP (2005)
Global mammal conservation: What must we manage? Science
309:603–607.

( f ) Pantheria. www.pantheria.org Accessed May 13, 2008.
(g) Ernest SKM (2003) Life history characteristics of placental

nonvolant mammals. Ecology 84:3402–3402.
(h) Jones KE, Purvis A, Gittleman JL (2003) Biological

correlates of extinction risk in bats. Am Nat 161:601–614.
(i) Nowak RM (1991) Walker’s Mammals of the World (The

John Hopkin’s Univ Press, Baltimore), 6th Ed.
(j) Dickman C, Woodford Ganf R (2007) A Fragile Balance:

The Extraordinary Story of Australian Marsupials (Univ of Chi-
cago Press, Chicago).

(k) Wilson DE, Reeder DM (2005), Mammal Species of the
World. A Taxonomic and Geographic Reference (The Johns
Hopkins Univ Press, Baltimore 2005) 3rd Ed. (Available at:
http://www.bucknell.edu/msw3/).

(l) Primates. (Available at: http://pin.primate.wisc.edu/). Ac-
cessed May 13, 2008.

(m) Australian wildlife. (Available at: http://www.australian-
wildlife.org/). Accessed May 13, 2008.

(n) Lioncrusher’s Domain. (Available at: http://www.lion-
crusher.com/animalinfo.asp). Accessed May 13, 2008.

(o) North American Mammals. (Available at: http://
www.mnh.si.edu/mna/search�name.cfm.)

(p) Seal Conservation. (Available at: http://www.pinni-
peds.org/main.htm).

(q) Bat Conservation International. (Available at: http://
www.batcon.org). Accessed May 13, 2008.

(r) Afrotheria Specialist Group. (Available at: http://
research.calacademy.org/research/bmammals/afrotheria/AS-
G.html). Accessed May 13, 2008.

(s) MacDonald D, ed (2006) Encyclopedia of Mammals (Ox-
ford University Press, Oxford).

(t) Mammalian Species. (Available at: http://www.scienc-
e.smith.edu/departments/Biology/VHAYSSEN/msi/default-
.html.)

(u) Animal Diversity Web. (Available at: http://animaldiver-
sity.ummz.umich.edu/site/index.html.)

(v) AnAge Database. (Available at: http://genomics.senescen-
ce.info/species/).

(w) Wikipedia. (Available at: http://en.wikipedia.org).
(x) The Ultimate Ungulate. (Available at: http://www.ultima-

teungulate.com/).
(y) MarineBio. (Available at: www.MarineBio.org.)
(z) The Beaked Whale Resource. (Available at: http://

www.beakedwhaleresource.com/).
(aa) International Union for the Conservation of Nature 2007

Red List of Threatened Species (IUCN/SSC Red List Program,
Geneva, Switzerland).

(bb) IUCN 2008 Red List of Threatened Species, summary
statistics for globally threatened species, Table 7, Species chang-
ing IUCN Red List status. (Available at: http://www.iucnredlis-
t.org/documents/2008RL�stats�table�7�v1223294385.pdf).

(cc) Cardillo M, et al. (2004) Human population density and
extinction risk in the world’s carnivores. PLoS Biol 2, 10.1371/
journal.pbio.0020197.

(dd) Leonard WR, Robertson ML (1998) Comparative pri-
mate energetics and hominid evolution. Am J Phys Anthropol
102:265–281.

Decision-Tree Modeling. Recently, decision trees have emerged as
powerful tools for analyzing complex ecological datasets because
they offer a useful alternative to traditional statistical techniques
when modeling nonlinear data containing multiple interacting
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variables (13, 14). In studies in which predictive accuracy is the
goal, including conservation planning (15, 16), modeling species
distributions (17), and global change forecasting (18, 19), deci-
sion trees often exhibit greater power for explaining and pre-
dicting ecological patterns (20, 21).

A decision tree is a logical model represented as a binary tree
that shows how the value of a response variable (here, extinction
risk) can be predicted using the values of a set of predictor
variables. A decision-tree model predicting a continuous re-
sponse variable is known as a regression tree; a model predicting
a categorical response is a classification tree. Here we used a
dichotomous response variable: for our purposes, species listed
as vulnerable or higher [vulnerable (VU), endangered (EN),
critically endangered (CR), extinct in the wild (EW), extinct
(EX)] by the IUCN were considered ‘‘threatened,’’ and species
of lower risk [least concern (LC), near threatened (NT)] were
considered ‘‘nonthreatened,’’ producing a classification tree. We
chose this split for several reasons. (i) We did not treat the IUCN
categories as continuous (9), because the differences between
adjacent risk levels probably are not equivalent across the IUCN
scale. (ii) We were less interested in predicting specific IUCN
categories than in a generalized analysis of threat.

Classification Tree. We used the rpart package in R to build a
classification tree model for global mammal threat status (22,
23). Missing data points were interpolated automatically based
on the correlation matrix between predictor variables. The tree
was built by repeatedly partitioning the dataset into a nested
series of mutually exclusive groups, each group as homogenous
as possible with respect to the response variable. Homogeneity
(or node impurity) was measured by the Gini index (24).
Branches or split points in the tree were determined by consid-
ering all possible splits of all predictor variables and selecting the
split that resulted in the most homogenous subgroups for the
data. The branching process continued until further subdivision
no longer reduced the Gini index. Lower branches were pruned
by 10-fold cross-validation to produce an optimal tree, balancing
complexity (i.e., number of nodes) versus prediction accuracy
(25). The smallest tree (11 terminal nodes) with an error rate
within 1 standard error of the minimum-error tree was taken as
the optimal tree (supporting information (SI) Fig. S2; 13).
However, we also examined a larger tree (20 terminal nodes)
within 1 standard error of the minimum-error tree to visualize
interactions between predictors not included in the optimal tree.
To ensure that all splits included in the expanded tree were
meaningful, we performed standard �2 tests at each node
following Duda et al. (26). The �2 test compared the number of
species of each category (threatened or nonthreatened) placed
in each daughter node versus a random split of the data at that
node. All splits in the optimal and extended trees were signifi-
cantly different from random (P � 0.001).

Random Forest. Under certain conditions, decision trees can be
unstable, when small changes in the data can lead to significant
changes in the variables used in the splits and the overall tree
shape (21). To ensure the robustness of our results, we used a
random forest, a modeling technique that combines the predic-
tions of many independent decision-tree models to produce a
more accurate classification (20). However, the random forest is
a ‘‘black box’’ classification method (14) and does not produce
a final tree for graphical interpretation of the model. Using a
random forest of 500 trees (package randomForest in R; ref 27),
we produced predictions of mammal threat status and deter-

mined the relative importance of the predictor variables. Pre-
dictor importance was measured by the decrease in classification
accuracy resulting from the removal of the focal variable from
the model (27). Pair-wise z-tests on the mean importance of each
predictor across all 500 trees were used to identify significant
differences between predictors.

Model Accuracy. Decision trees do not provide probability levels
or confidence intervals associated with splits or predictions.
However, we quantified overall model accuracy using the per-
centage of species correctly classified (PCC), specificity (per-
centage of nonthreatened species correctly classified), and sen-
sitivity (percentage of threatened species correctly classified).
We also used Cohen’s kappa statistic (function kappa2 in R
package irr; ref 28) to measure the agreement between predicted
and actual categorizations while correcting for agreement caused
by chance (14). Both the classification tree and the random forest
were highly accurate (PCC � 80%) and statistically significant
(Cohen’s kappa, P � 0.001; Table S1) predictive models of threat
status. We used the random forest for all subsequent predictions
of threat status caused by the additional predictive power gained
from the bootstrap procedure. Together, classification trees and
random forests represent a promising approach to the study and
prediction of extinction that is especially well suited to conser-
vation problems (15, 16, 20, 21).

Misclassification Costs. Because wrongly classifying a species as
unthreatened when it actually is threatened (false negatives)
should be penalized in a conservation-oriented model, we re-
peated the analyses assigning different relative costs to the 2
types of misclassification (false positives and false negatives).
However, the model was robust to the effect of increasing
misclassification costs, even when the cost of a false negative was
increased to 8 times the cost of a false positive; therefore only
results from the equal costs model are shown.

Phylogenetic Relationships. Although extinction risk often is
not phylogenetically random, and species traits are the product
of shared evolutionary history, decision-tree models identify
the observed relationships between predictors and extinction
risk and are not designed to test evolutionary hypotheses.
Because the decision-tree model does not rely on the assump-
tion of independence between data points, there is no need
to ‘‘correct’’ for phylogenetic relationships between species
(15, 29).

Threat Predictions. An important outcome of the random forest
model is the prediction of threat for each species. These pre-
dictions were used to identify species that share many of the
characteristics of threatened species but currently were not
considered threatened by the IUCN (false positives, yellow in
Figs. 3 and 4). The model also identified some species (false
negatives, cyan in Figs. 3 and 4) as not threatened because their
ecologies were not generally associated with high extinction risk.
For these species, extinction risk must be related to factors other
than the ecological predictors in the model. Finally, using the
species-level predictive power of the random forest model, we
predicted the threat status for 341 data-deficient species. We
also were able to revise our predictions for 67 false-negative
species after updating their geographic range data from histor-
ical (before 1900) to current estimates of geographic range. This
exercise improved our understanding of how reduction in geo-
graphic range impacts species’ extinction risk.
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Fig. S1. Decision tree from Fig. 2 showing the number of nonthreatened and threatened species at each node (nonthreatened/threatened).
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Fig. S2. Relative error for the fitted classification tree determined by 10-fold cross-validation. The dashed line represents � 1 SE of the error for the
minimum-error tree. Optimal (n � 11) and expanded (n � 20) trees are indicated by filled circles.
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Table S1. Accuracy measures for predictions of threat status in mammal species (n � 4078).

Accuracy Metric

Classification Model

Random
Forest Classification Tree: expanded (n � 20) Classification Tree: optimal (n � 11)

PCC 81.8% 80.9% 80.0%
Specificity 93.3% 94.9% 94.4%
Sensitivity 47.7% 39.5% 37.3%
Error rate (null error � 25.2%) 18.2% 19.1% 20.0%
Kappa (P-value) 0.44 (� 0.001) 0.40 (� 0.001) 0.37 (� 0.001)

For classification tree models, n is the number of terminal nodes in the tree. PCC denotes percentage correctly classified. Specificity is the percentage of
nonthreatened species correctly classified, and sensitivity is the percentage of threatened species correctly classified. Null error rate refers to error expected if
all species were predicted in the more common category (nonthreatened). Cohen’s kappa is a measure of the agreement between predictions and actual values,
corrected for agreement resulting from chance alone; kappa for all models was highly significant, indicating a very low probability that agreement can be
attributed to chance.
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Table S2. Correlation matrix of all continuous predictor variables

Predictor Variables Log10 Mass (g)
Log10 Geographic

Range (km2)
Log10 Home
Range (km2)

Log10

Density (km�2)
Log10

Group Size

Log10 geographic range (km2) 0.044
0.000

– – – –

Log10 home range (km2) 0.775
0.000

0.214
0.000

– – –

Log10 density km�2) �0.780
0.000

0.211
0.000

�0.864
0.000

– –

Log10 group size 0.008
0.167

0.059
0.015

0.349
0.000

�0.204
0.000

–

Mass-specific production (g) �0.503
0.000

0.130
0.025

�0.403
0.000

0.471
0.000

0.052
0.358

Upper values are correlation coefficients. Lower values are P values. All correlations are significant at the 95% confidence level, apart from the correlation
of log mass and log group size, and log group size and mass-specific production.
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Table S3. IUCN data-deficient species predicted to be at risk

Order Family Genus Species

Artiodactyla Cervidae Elaphodus cephalophus
Artiodactyla Cervidae Muntiacus feae
Artiodactyla Cervidae Muntiacus gongshanensis
Artiodactyla Cervidae Muntiacus vuquangensis
Artiodactyla Cervidae Hippocamelus antisensis
Artiodactyla Cervidae Mazama nana
Carnivora Viverridae Osbornictis piscivora
Carnivora Canidae Vulpes rueppelli
Carnivora Mustelidae Lutra sumatrana
Chiroptera Hipposideridae Hipposideros schistaceus
Chiroptera Vespertilionidae Hypsugo lophurus
Chiroptera Vespertilionidae Murina ryukyuana
Chiroptera Vespertilionidae Pipistrellus minahassae
Chiroptera Pteropodidae Pteropus argentatus
Chiroptera Vespertilionidae Myotis yambarensis
Dasyuromorphia Dasyuridae Antechinus wilhelmina
Dasyuromorphia Dasyuridae Phascolosorex doriae
Diprotodontia Phalangeridae Ailurops ursinus
Diprotodontia Macropodidae Dendrolagus inustus
Diprotodontia Macropodidae Dendrolagus spadix
Diprotodontia Macropodidae Dendrolagus ursinus
Diprotodontia Pseudocheiridae Pseudochirulus caroli
Diprotodontia Pseudocheiridae Pseudochirulus schlegeli
Diprotodontia Phalangeridae Strigocuscus celebensis
Peramelidae Peroryctidae Echymipera clara
Peramelidae Peroryctidae Echymipera davidi
Peramelidae Peroryctidae Echymipera echinista
Peramelidae Peroryctidae Microperoryctes murina
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Table S4. Species not currently recognized as threatened by the IUCN (i.e., LR or LC) but predicted to be at risk by our model.

Order Family Genus Species

Artiodactyla Antilocapridae Antilocapra americana
Artiodactyla Bovidae Capra sibirica
Artiodactyla Bovidae Capra pyrenaica
Artiodactyla Bovidae Cephalophus silvicultor
Artiodactyla Bovidae Cephalophus maxwellii
Artiodactyla Bovidae Cephalophus niger
Artiodactyla Bovidae Cephalophus leucogaster
Artiodactyla Bovidae Cephalophus callipygus
Artiodactyla Bovidae Cephalophus ogilbyi
Artiodactyla Bovidae Connochaetes gnou
Artiodactyla Bovidae Gazella bennettii
Artiodactyla Bovidae Naemorhedus goral
Artiodactyla Bovidae Oreamnos americanus
Artiodactyla Bovidae Ovis dalli
Artiodactyla Bovidae Redunca fulvorufula
Artiodactyla Bovidae Sylvicapra grimmia
Artiodactyla Bovidae Taurotragus derbianus
Artiodactyla Bovidae Tragelaphus derbianus
Artiodactyla Cervidae Alces alces
Artiodactyla Cervidae Cervus nippon
Artiodactyla Cervidae Mazama rufina
Artiodactyla Cervidae Muntiacus atherodes
Artiodactyla Cervidae Pudu mephistophiles
Artiodactyla Giraffidae Okapia johnstoni
Artiodactyla Moschidae Moschus fuscus
Artiodactyla Moschidae Moschus berezovskii
Artiodactyla Suidae Phacochoerus africanus
Artiodactyla Suidae Phacochoerus aethiopicus
Artiodactyla Suidae Sus heureni
Artiodactyla Suidae Sus timoriensis
Carnivora Canidae Canis lupus
Carnivora Hyaenidae Hyaena hyaena
Carnivora Mustelidae Aonyx capensis
Carnivora Mustelidae Melogale orientalis
Carnivora Otariidae Arctocephalus australis
Carnivora Phocidae Halichoerus grypus
Carnivora Ursidae Ursus americanus
Chiroptera Emballonuridae Emballonura beccarii
Chiroptera Hipposideridae Hipposideros wollastoni
Chiroptera Hipposideridae Hipposideros edwardshilli
Chiroptera Pteropodidae Pteropus seychellensis
Chiroptera Pteropodidae Pteropus macrotis
Chiroptera Pteropodidae Pteropus anetianus
Chiroptera Pteropodidae Rousettus celebensis
Chiroptera Rhinolophidae Rhinolophus monoceros
Chiroptera Vespertilionidae Eudiscopus denticulus
Chiroptera Vespertilionidae Myotis martiniquensis
Dasyuromorphia Dasyuridae Murexia longicaudata
Dasyuromorphia Dasyuridae Sarcophilus harrisii
Diprotodontia Macropodidae Dendrolagus lumholtzi
Diprotodontia Macropodidae Dendrolagus bennettianus
Diprotodontia Macropodidae Dorcopsis hageni
Diprotodontia Macropodidae Dorcopsis muelleri
Diprotodontia Macropodidae Macropus irma
Diprotodontia Macropodidae Macropus parryi
Diprotodontia Macropodidae Macropus bernardus
Diprotodontia Macropodidae Onychogalea unguifera
Diprotodontia Petauridae Dactylopsila palpator
Diprotodontia Phalangeridae Phalanger intercastellanus
Diprotodontia Phalangeridae Phalanger sericeus
Diprotodontia Phalangeridae Phalanger carmelitae
Diprotodontia Phalangeridae Phalanger orientalis
Diprotodontia Phalangeridae Spilocuscus maculatus
Diprotodontia Phalangeridae Strigocuscus pelengensis
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Order Family Genus Species

Diprotodontia Phalangeridae Trichosurus caninus
Diprotodontia Phalangeridae Wyulda squamicaudata
Diprotodontia Potoroidae Bettongia gaimardi
Diprotodontia Pseudocheiridae Pseudochirops cupreus
Diprotodontia Pseudocheiridae Pseudochirulus herbertensis
Diprotodontia Pseudocheiridae Pseudochirulus cinereus
Diprotodontia Pseudocheiridae Hemibelideus lemuroides
Lagomorphia Leporidae Sylvilagus mansuetus
Perissodactyla Equidae Equus kiang
Primates Cebidae Alouatta palliata
Primates Cebidae Alouatta sara
Primates Cebidae Pithecia albicans
Primates Cercopithecidae Cercocebus atys
Primates Cercopithecidae Cercopithecus lhoesti
Primates Cercopithecidae Cercopithecus hamlyni
Primates Cercopithecidae Colobus polykomos
Primates Cercopithecidae Papio anubis
Primates Cercopithecidae Papio papio
Primates Cercopithecidae Presbytis rubicunda
Primates Cercopithecidae Presbytis femoralis
Primates Cercopithecidae Theropithecus gelada
Primates Lemuridae Eulemur fulvus
Primates Lemuridae Hapalemur griseus
Rodentia Agoutidae Agouti taczanowskii
Rodentia Capromyidae Capromys pilorides
Rodentia Capromyidae Mysateles meridionalis
Rodentia Dasyproctidae Dasyprocta guamara
Rodentia Erethizontidae Coendou rothschildi
Rodentia Hystricidae Hystrix africaeaustralis
Rodentia Hystricidae Hystrix pumila
Rodentia Hystricidae Hystrix sumatrae
Rodentia Hystricidae Hystrix crassispinis
Rodentia Hystricidae Hystrix javanica
Rodentia Muridae Akodon markhami
Rodentia Muridae Chiropodomys muroides
Rodentia Muridae Eliurus tanala
Rodentia Muridae Eospalax smithii
Rodentia Muridae Haeromys minahassae
Rodentia Muridae Hyomys goliath
Rodentia Muridae Mallomys aroaensis
Rodentia Muridae Mallomys istapantap
Rodentia Muridae Melomys leucogaster
Rodentia Muridae Microhydromys musseri
Rodentia Muridae Microtus breweri
Rodentia Muridae Niviventer coxingi
Rodentia Muridae Niviventer lepturus
Rodentia Muridae Parahydromys asper
Rodentia Muridae Peromyscus guardia
Rodentia Muridae Peromyscus sejugis
Rodentia Muridae Pogonomys loriae
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Table S5. Species predicted to be at risk on the basis of current geographic range

Order Family Genus Species

Artiodactyla Bovidae Damaliscus lunatus
Artiodactyla Bovidae Tragelaphus eurycerus
Artiodactyla Camelidae Lama guanicoe
Artiodactyla Cervidae Cervus elaphus
Artiodactyla Cervidae Rangifer tarandus
Artiodactyla Tayassuidae Tayassu pecari
Carnivora Felidae Herpailurus yaguarondi
Carnivora Felidae Leopardus pardalis
Carnivora Felidae Leopardus wiedii
Carnivora Felidae Leptailurus serval
Carnivora Hyaenidae Hyaena brunnea
Carnivora Mustelidae Conepatus mesoleucus
Carnivora Mustelidae Conepatus leuconotus
Cingulata Dasypodidae Chaetophractus vellerosus
Cingulata Dasypodidae Dasypus hybridus
Cingulata Dasypodidae Euphractus sexcinctus
Cingulata Dasypodidae Tolypeutes matacus
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