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As human population and resource demands continue to grow,
biodiversity conservation has never been more critical. About
one-quarter of all mammals are in danger of extinction, and more
than half of all mammal populations are in decline. A major priority
for conservation science is to understand the ecological traits that
predict extinction risk and the interactions among those predictors
that make certain species more vulnerable than others. Here, using
a new database of nearly 4,500 mammal species, we use decision-
tree models to quantify the multiple interacting factors associated
with extinction risk. We show that the correlates of extinction risk
vary widely across mammals and that there are unique pathways
to extinction for species with different lifestyles and combinations
of traits. We find that risk is relative and that all kinds of mammals,
across all body sizes, can be at risk depending on their specific
ecologies. Our results increase the understanding of extinction
processes, generate simple rules of thumb that identify species at
greatest risk, and highlight the potential of decision-tree analyses
to inform conservation efforts.
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Certain ecological traits, such as small geographic range, low
population density, slow life history, and large body size are

known to correlate strongly with extinction risk in mammals, and
the importance of these traits can vary among different clades of
mammals (1–5). Large body size, in particular, is a well-known
predictor of both past and present human-related extinctions (4,
6, 7). Although the identification of these correlates of extinction
has been an important first step in guiding conservation prior-
ities, it is critical to understand how multiple ecological factors
interact to predict risk across species that differ by orders of
magnitude in body size, area of geographic range, abundance,
life history, niche characteristics, and other traits. For example,
it is not enough to know that species with small geographic
ranges tend to be at greater risk; rather, we need to know how
range size interacts with other ecological traits to make certain
species with small ranges more vulnerable than others. By
understanding how multiple key ecological predictors interact,
we are able to identify the species at greatest risk and also to
understand what makes them vulnerable. Additionally, to help
avert the losses of populations and species of mammals (8–10),
there is a real need for conservation scientists to provide results
that are directly relevant and are easily interpretable for con-
servation practice. In this paper, we draw on a large dataset and
methodological approach to build on current knowledge of
extinction risk in mammals. Using a decision-tree modeling
framework we (i) identify interactions among multiple ecological
traits that lead to different pathways to extinction across mam-
mals and (ii) use our model to codify simple rules of thumb that
can be used to guide conservation.

Decision-Tree Modeling Approach. Although decision trees have
been used previously in ecology, their application to conserva-
tion biology has been limited (11–15). The decision-tree ap-
proach is a powerful alternative to traditional linear models and

has documented advantages for extinction risk analyses, espe-
cially when the goal is predictive accuracy (14–16). Decision-tree
models are designed to identify nonlinear, context-dependent
associations among multiple correlated predictor variables (11,
14–17). They require fewer assumptions than correlational
methods and do not assume a specific distribution of predictor
variables. Further, they do not assume data independence,
avoiding potential concerns about pseudoreplication and alle-
viating the need for explicit phylogenetic control (16, 18). In
decision trees, the same predictor variables may reappear re-
peatedly in the model as necessary, a fundamental difference
from the single-predictor variables of linear models. Conse-
quently, the explanatory power of a predictor variable is not
conflated by how many species share a particular trait value
because of shared evolutionary history. Instead, the model
quantifies the association of predictors and response variables on
a species-by-species basis. Because decision trees predict out-
comes of interest (i.e., extinction or survival) based on the nested
internal structure of the predictor variables, they may provide a
more accurate predictive framework for extinction risk than
traditional parametric approaches. Whereas previous studies of
mammalian extinction risk have addressed the interactions of
variables in linear models (1, 4, 19), decision-tree analyses offer
a major advance, because they reveal both how the interactions
between predictors lead to the outcomes of interest and also how
these interactions differ among subsets of the data (14). In
contrast, linear models can indicate only whether a particular
interaction is statistically significant over the entire dataset. This
added insight into the context-dependence of interactions is a
major advantage of decision-tree models. Finally, decision-tree
analyses produce graphical outputs that quantify and summarize
the interactions in a visual, easily interpretable format (14, 17).
Because decision-tree models can be sensitive to small changes
in the underlying data, we also used a random forest, a modeling
technique that combines the predictions of many independent
decision-tree models into a robust composite model (20).

Results and Discussion
The random forest model classified mammal threat status with
82% accuracy [percent correctly classified (PCC), Cohen’s
kappa � 0.44, P � 0.001; supporting information (SI) Table S1],
based solely on ecological traits. It identified 8 major predictors
of extinction risk: small geographic range, low population den-
sity, small group size, slow production rate, large home range,
large body size, habitat mode, and activity period (Fig. 1). These
predictors were intercorrelated (Table S2), and most have been
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related to extinction risk in previous studies of mammals and
other taxa (1–6, 21–23). However, the decision tree goes beyond
previous work by showing quantitatively how these key predic-

tors interact to create specific pathways to extinction (Fig. 2 and
Fig. S1). Classification accuracy of the decision-tree model (Fig.
2) was similar to the random forest (PCC 81%, Cohen’s kappa �
0.40, P � 0.001; Table S1). The first major split in the tree defines
pathways separating large (� 5.5 kg) species and small (� 5.5 kg)
species, a split similar to the 3-kg body size threshold identified
by Cardillo et al. (4). Within each of these branches, the next
variable is geographic range, followed by other ecological traits.
Note that body size enters the model at several places throughout
the tree, and at all these nodes species with relatively larger body
sizes have higher risk. This finding suggests that size-selective
extinction depends primarily on how large a species is relative to
other species that share similar ecological traits rather than on
its absolute body size. Similarly, at all nodes based on geographic
range, species with relatively smaller ranges have a higher
probability of extinction. A similar dichotomous pattern appears
among different lifestyles of small mammals. For example,
fossorial species consistently have lower risk, whereas volant
species have higher risk, likely reflecting differences in survi-
vorship related to these lifestyles (24, 25). In the statistically
significant lower branches, reproduction rate is identified as a
key factor for large mammals: species with slower reproductive
rates are at higher risk than otherwise similar species with faster
life histories. These patterns temper the roles of body size and
geographic range as interpreted in previous studies, showing that
species with a wide range of trait values have non-zero risk. For
example, depending on their ecologies, small species can have
risks equal to or greater than those of large species.

The decision tree provides the critical values of traits and
quantifies how they interact to affect risk across the broad
spectrum of mammalian ecologies. For example, not all large-
bodied species with small geographic ranges have a high prob-
ability of extinction. Indeed, our model predicts that species
larger than 5.5 kg with geographic ranges less than �1.5 million
km2 have a negligible risk if they have fast reproductive rates for

Fig. 1. Relative importance, in rank order, of ecological predictors of
mammalian extinction risk. Importance was measured by the drop in classifi-
cation accuracy after predictor removal in a random forest of 500 trees.
Differences in importance between predictors were quantified with pair-wise,
2-tailed z-tests, � � 0.05. The top 8 predictors (geographic range–activity
period) were statistically indistinguishable, except that activity period was
significantly less than geographic range; all 8 were significantly more impor-
tant than landmass, trophic group, and sociality, and all other variables were
significantly more important than sociality.

Fig. 2. Decision tree showing extinction risk based on ecological traits (body mass, geographic range size, mass-specific production rate, population density,
group size, home range, activity period, type of landmass, habitat mode, sociality, trophic group). Branches in the smaller, optimal tree (see Fig. S1) are shown
in bold, but all depicted branches are statistically meaningful (�2 test, P � 0.001). The probability of being threatened is indicated at each node; species with higher
risk are at the right of each branch point, and those with lower risk are at the left. Labeled nodes (A–C) are referenced in main text.
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their body size (see node A in Fig. 2); it is the interaction between
small geographic ranges and slow reproductive rates, rather than
any of these traits in isolation, that creates a pathway to high
extinction risk in large mammals. Similarly, within small-bodied
species, fossorial species weighing between 304 g and 5.5 kg with
geographic ranges less than 28,000 km2 have only a 9% risk of
extinction (node B), whereas arboreal, terrestrial, or volant
species of similar body and range size have a 68% risk (node C).
In this case, it is the interaction of lifestyle with body size and
range size that determines risk in these small mammals.

Many of the key predictors of extinction are highly correlated
with body size (Fig. 3, Table S2). Indeed, extinction risk increases
rapidly with body size (Fig. 4A). Figs. 3 and 4B show that species
above 5.5 kg, about the size of a raccoon (Procyon lotor), have
a disproportionately high risk. This pattern is consistent with the
well-known impacts on large animals of human hunting and
fishing for meat and secondary products, such as ivory and horn,
during both the Pleistocene and present-day extinctions (3, 4, 6,
7). However, the decision-tree model demonstrates wide vari-
ability in extinction risk among large mammals (� 5.5 kg),
ranging from 0% to 81%, depending on interactions of large
body size with other ecological traits (Fig. 2).

Our model provides insights into extinction risk in small
mammals. The insights related to body size are particularly
valuable, because, although small size generally is thought to be
associated with lower extinction risk (4), about 85% of extant
mammal species are smaller than 5.5 kg, about 40% of all
mammal species predicted by our model to be at risk are below
this size (Fig. 4B). Our finding that the interaction of multiple

ecological traits causes many small species to be at high risk is
consistent with the growing recognition that risk in the current
extinction crisis does not scale simply with body size (6, 12, 23).
Human impacts today include not only hunting, but also exter-
mination programs, climate change, spread of diseases and
exotic species, deforestation, habitat fragmentation, urbaniza-
tion, desertification, and the conversion of landscapes to agri-
culture (26–28), and these factors affect biodiversity through
multiple pathways at multiple scales.

Finally, our decision-tree model is an important conservation
tool, providing simple rules of thumb and a map of pathways for
predicting risk (Fig. 2). This type of general classification model
for extinction risk may be particularly useful for rapid assessment
and prioritization of poorly known species. We found that 28
International Union for the Conservation of Nature (IUCN)
data-deficient species had high predicted risk (Table S3). Fur-
ther, our model highlights the structure of interactions between
lifestyles, ecological traits, and ranges of trait values associated
with high risk in mammals. Traditional approaches to extinction
risk analysis generally have been unable to quantify context-
dependent interactions among multiple traits. Complex nonlin-
ear interactions among correlated traits produce multiple, dif-
ferent pathways to extinction. Our results underscore the

Fig. 3. Bivariate plots of the top 5 continuous ecological predictors as a
function of body mass. Within each plot (A–E), the 4 categories of extinction
risk cluster consistently. Note that home range (B), population density (C), and
mass-specific production rate (E) correlate strongly with body size. The upper
cloud of points in E represents placental mammals; the lower cluster repre-
sents marsupials.

Fig. 4. (A) Body size and extinction risk. Proportion of species predicted to
be threatened in each body size class (0.25 log g). (B) Mammalian body mass
distribution showing the 4 risk categories based on the random forest model.
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importance of natural history, ecology, and systematics in con-
servation biology and also the contribution of new quantitative
tools, such as decision trees, to identify species at risk of
extinction, improving our ability to guide policies and manage-
ment for preserving biodiversity.

Materials and Methods
For 4,420 mammal species (out of a total of more than 5,400 mammals) we
compiled a database of quantitative and categorical ecological traits, includ-
ing body mass, geographic range size, speed of life history [calculated as the
mass-specific production rate (24, 25)], population density, group size, home
range, activity period (diurnal, nocturnal, or both), type of landmass (conti-
nent, island, or both), habitat mode (aquatic, arboreal, fossorial, marine,
marine with births on land, terrestrial, or volant), sociality, and trophic cate-
gory (carnivore, omnivore, herbivore). Our analyses excluded cetaceans, IUCN
data-deficient species, and those listed on the basis of small geographic range
(IUCN criterion B), (see SI Methods for details). We used a dichotomous
response variable to represent extinction risk: species classified as vulnerable
or higher by the IUCN were considered ‘‘threatened,’’ and least concerned or

near threatened species were considered ‘‘nonthreatened’’ (29, 30). We used
the rpart package in R (31) to build a classification-tree model that graphically
depicts quantitative relationships between predictor variables and extinction
risk. The tree was pruned to its optimal size, minimizing both classification
error and tree complexity, and an extended tree including statistically signif-
icant lower branches (see SI Methods) was examined also (Fig. S2). A random
forest model of 500 classification trees was used to estimate the relative
importance of predictor variables and to make predictions about threat status
(32). Model accuracy for the tree and random forest was quantified using
standard metrics (Table S1). We then used our model to predict risk for
data-deficient species and those with current range estimates. Lists of species
predicted to be at high risk are provided in Tables S3–S5.
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